Recursively Accelerated Multilevel Aggregation for Markov Chains
نویسندگان
چکیده
A recursive acceleration method is proposed for multiplicative multilevel aggregation algorithms that calculate the stationary probability vector of large, sparse and irreducible Markov chains. Pairs of consecutive iterates at all branches and levels of a multigrid W cycle with simple, nonoverlapping aggregation are recombined to produce improved iterates at those levels. This is achieved by solving quadratic programming problems with inequality constraints: the linear combination of the two iterates is sought that has minimal two-norm residual, under the constraint that all vector components are nonnegative. It is shown how the two-dimensional quadratic programming problems can be solved explicitly in an efficient way. The method is further enhanced by windowed toplevel acceleration of the W cycles using the same constrained quadratic programming approach. Recursive acceleration is an attractive alternative to smoothing the restriction and interpolation operators, since the operator complexity is better controlled and the probabilistic interpretation of coarse-level operators is maintained on all levels. Numerical results are presented showing that the resulting recursively accelerated multilevel aggregation (RAMA) cycles for Markov chains, combined with top-level acceleration, converge significantly faster than W cycles, and lead to close-to-linear computational complexity for challenging test problems.
منابع مشابه
The Finest Level Acceleration of Multilevel Aggregation for Markov Chains
In this paper, we consider a class of new accelerated multilevel aggregation methods using two polynomial-type vector extrapolation methods, namely the reduced rank extrapolation (RRE) and the generalization of quadratic extrapolation (GQE) methods. We show how to combine the multilevel aggregation methods with the RRE and GQE algorithms on the finest level in order to speed up the numerical co...
متن کاملFast multilevel methods for Markov chains
This paper describes multilevel methods for the calculation of the stationary probability vector of large, sparse, irreducible Markov chains. In particular, several recently proposed significant improvements to the multilevel aggregation method of Horton and Leutenegger are described and compared. Furthermore, we propose a very simple improvement of that method using an over-correction mechanis...
متن کاملMultilevel Adaptive Aggregation for Markov Chains, with Application to Web Ranking
A multilevel adaptive aggregation method for calculating the stationary probability vector of an irreducible stochastic matrix is described. The method is a special case of the adaptive smooth aggregation and adaptive algebraic multigrid methods for sparse linear systems, and is also closely related to certain extensively studied iterative aggregation/disaggregation methods for Markov chains. I...
متن کاملNasa Contractor Report #191558 a Multi-level Solution Algorithm for Steady-state Markov Chains
A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial diierential equations. Initial results of numerical exper...
متن کاملICASE Report #93-81 NASA Contractor Report #191558 A Multi-Level Solution Algorithm for Steady-State Markov Chains
A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial di erential equations. Initial results of numerical exper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 32 شماره
صفحات -
تاریخ انتشار 2010